L'étudiant Marocain
Vous souhaitez réagir à ce message ? Créez un compte en quelques clics ou connectez-vous pour continuer.
Le Deal du moment : -40%
Tefal Ingenio Emotion – Batterie de cuisine 10 ...
Voir le deal
59.99 €

Exposé sur: les questions posés sur un physicien

2 participants

Aller en bas

Exposé sur: les questions posés sur un physicien Empty Exposé sur: les questions posés sur un physicien

Message par abualy Sam 06 Oct 2007, 06:50

1. Théorie et expérience
Les physiciens observent, mesurent et modélisent le comportement et les interactions de la matière à travers l'espace et le temps (définis comme « phénomènes physiques »).
Une théorie ou modèle est un ensemble conceptuel formalisé mathématiquement, dans lequel des paramètres physiques qu'on suppose indépendants (charge, énergie, temps par exemple) sont exprimés sous forme de variables (q, E, t) et mesurés avec des unités appropriées (Coulomb, Joule, seconde). La théorie relie ces variables par une ou plusieurs équations (E = mc2 est sans doute la plus connue). Ces relations permettent de prédire de façon quantitative le résultat d'expériences.
Une expérience est un protocole matériel permettant de mesurer certains phénomènes dont la théorie donne une représentation conceptuelle. Il est illusoire d'isoler une expérience de la théorie associée. Le physicien ne mesure évidemment pas des choses au hasard ; il faut qu'il ait à l'esprit l'univers conceptuel d'une théorie. Aristote n'a jamais pensé calculer le temps que met une pierre lâchée pour atteindre le sol, simplement parce que sa conception du monde sublunaire n'avait rien à faire avec une telle quantification. Cette expérience a dû attendre Galilée pour être faite. Un autre exemple d'expérience dictée nettement par un cadre conceptuel théorique est la découverte des quarks. dans le cadre de la physique des particules. Le physicien des particules Murray Gell-Mann a remarqué que les particules soumises à la force forte se répartissaient suivant une structure mathématique élégante, mais que trois positions fondamentales (au sens mathématique de la théorie des représentations) de cette structure n'étaient pas réalisées. Il postula donc l'existence de particules plus fondamentales (au sens physique) que les protons et les neutrons. Des expériences permirent par la suite, en suivant cette théorie, de mettre en évidence leur existence.
Inversement, des expériences fines ou nouvelles ne coïncidant pas avec la théorie peuvent ou bien remettre en cause la théorie — comme ce fut le cas du problème du corps noir qui provoqua l'avènement de la mécanique quantique et la disparition du vitalisme ou de l'atomisme thermodynamique — ou bien pousser la théorie et le modèle à intégrer de nouveaux éléments. L'exemple de la découverte de Neptune est édifiante à ce titre. Les astronomes pouvaient faire une première expérience, celle de mesurer la trajectoire d'Uranus. Or la théorie de Newton donnait une trajectoire différente de celle constatée. Pour maintenir la théorie, Urbain Le Verrier et indépendamment John Adams postulèrent l'existence d'une nouvelle planète, et d'après cette hypothèse prédirent sa position, ce qui fut avéré après une seconde expérience qui consista à braquer un télescope à l'endroit annoncé. Il est clair ici que l'interprétation de la première expérience est tributaire de la théorie, et la seconde n'aurait jamais pu avoir lieu sans cette même théorie et son calcul. Un autre exemple de ce type est l'existence du neutrino, qui a été supposée par Pauli pour expliquer le spectre continu de la désintégration bêta ainsi que l'apparente non-conservation du moment cinétique.

2. La méthode en physique
Dans la présentation de la méthode par laquelle les lois de la physique sont généralement découvertes et établies, on laissera de côté les aspects méthodologiques qui permettent de la codifier ou de l’appliquer.
L’établissement d’une loi passe en général par quatre étapes :
– la réunion de données empiriques, le plus souvent quantitatives, grâce à l’expérience ; elles sont parfois reliées par des règles empiriques qui expriment certaines relations entre les données ;
– l’invention d’un schéma, c’est-à-dire, le plus souvent, d’un objet mathématique qui implique entre les données les relations qui sont observées par l’expérience ; à ce stade, il s’agit de la formation d’une hypothèse ;
– l’analyse détaillée du schéma mathématique conduite de manière à prédire, dans la mesure du possible, de nouvelles relations ; en d’autres termes, on détermine les prédictions contenues dans l’hypothèse ;
– la vérification par l’expérience de ces prédictions ; elle est considérée comme d’autant plus satisfaisante que celles-ci sont en plus grand nombre, davantage indépendantes les unes des autres et plus précises.
Ces diverses étapes sont plus ou moins marquées selon le cas, et certaines peuvent parfois être ramenées à l’évidence ou à la banalité, mais l’élaboration des théories complexes ou nouvelles, comme la mécanique quantique ou la relativité restreinte, est clairement passée par tous ces stades. Le temps et l’effort nécessaires à la réalisation de ce travail peuvent varier notablement selon les questions considérées.
Il est possible, à ce sujet, de faire un certain nombre de remarques. Il semblerait que la méthode indiquée ici soit, dans ses grands traits et même dans des cas élémentaires, très proche de l’acte psychologique qui consiste à « comprendre ». Dans la vie pratique cependant, les schémas mis en jeu sont rarement mathématiques, ils sont plutôt logiques ou consistent en une représentation spatiale.
Dans le même ordre d’idées, le rôle des mathématiques en physique est celui d’une représentation et, très souvent, ces dernières apparaissent donc comme une forme privilégiée du langage.
On désigne parfois le schéma mathématique sous le nom de modèle. Cette expression a l’avantage de souligner son rôle de représentation, mais elle suggère une vulnérabilité qu’il n’est pas toujours utile de faire apparaître. Il semble préférable de réserver ce terme de modèle à un schéma mathématique adéquat qui représente approximativement un nombre limité de faits, et de ne pas l’appliquer aux lois fondamentales. Ainsi, l’électrodynamique quantique recèle tous les aspects connus de la lumière, mais, dans certains cas, il est commode de représenter les effets que l’on discute par le modèle des particules (photons) ou par celui des ondes (champ électromagnétique). Dans une branche de la physique non encore totalement éclaircie, comme celle des particules élémentaires, un modèle est une organisation de certaines données partielles.
Malgré toutes les vérifications, il ne peut y avoir de certitude absolue sur la validité des lois, bien que le nombre énorme, la précision et la diversité des conséquences de la mécanique quantique, par exemple, ne puissent laisser au doute qu’une place minime (ce qui ne signifie pas que d’autres formulations, d’autres interprétations ou bien un nouvel approfondissement soient inconcevables). Il n’existe pas, semble-t-il, d’analyse satisfaisante de ce que peut être le degré de validité (de vérité ?) d’une loi, compte tenu des vérifications faites.
Contrairement aux trois autres, la deuxième étape, celle de l’invention de l’hypothèse, n’est ni rationnelle ni codifiable. étymologiquement, elle constitue l’acte de génie, c’est-à-dire de génération.
Les seules hypothèses qui apparaissent dans les traités de physique ou qui sortent du cercle des spécialistes sont celles qui ont en général été vérifiées. On connaît des exemples d’hypothèses, parfois extrêmement brillantes, qui ont réussi à « expliquer » un grand nombre de données indépendantes, de manière quantitative, et qui ont dû être rejetées au stade de la vérification. Cela comporte deux leçons : tout d’abord qu’il est absolument nécessaire de vérifier une hypothèse par l’examen de conséquences indépendantes des données initiales ; ensuite que la capacité d’imagination de l’homme est très grande. Pour employer un langage actuellement répandu, l’homme est aisément disposé à découvrir des structures dans les faits, et cela de plusieurs manières. La pratique de la physique apprend que, même lorsque les données quantitatives imposent à l’imagination des contraintes particulièrement fortes, il est possible de construire des structures qui sont à première vue satisfaisantes, bien qu’en réalité incorrectes.

3. Les structurations
Par structuration de la physique on entend les diverses manières de distinguer, dans ce domaine très vaste, des aspects complémentaires. Il s’agit principalement de l’opposition entre les différents domaines de dimensions, allant du microscopique au macroscopique et au-delà, de l’opposition du quantique et du classique, de celle qui existe entre physique fondamentale et physique appliquée, entre théorie et expérience et, enfin, de la division en disciplines.
Le grand nombre de ces divisions est rendu nécessaire à cause de l’étendue du sujet en dépit de son unité. En effet, le sujet de la physique est pratiquement l’Univers lui-même, considéré à la fois dans sa totalité, ses parties et ses lois. L’examen de ces différentes distinctions permettra de préciser un certain nombre de points importants.
Les différents domaines de dimensions
Le domaine microscopique est celui des propriétés des atomes, des noyaux et des particules élémentaires. Le rayon typique d’un atome est de 10_10 m (soit 10_1 nm), celui d’un noyau est de 10_15 m (un fermi). C’est là le domaine d’application principal de la mécanique quantique. Pour étudier expérimentalement les propriétés de la matière à des dimensions aussi petites, il faut, à cause des relations d’incertitude de Heisenberg, mettre en jeu des impulsions, c’est-à-dire des énergies considérables. C’est la raison pour laquelle il est nécessaire d’utiliser des accélérateurs de particules très puissants.
Le domaine macroscopique désigne celui des systèmes composés d’un très grand nombre d’atomes. Il va des objets visibles au microscope jusqu’aux galaxies et même plus loin dans chaque direction. Il est décrit par les lois de la physique classique (cf. Physique quantique et physique classique).
Un domaine moins bien exploré, que l’on pourrait qualifier de mégascopique, est celui des caractères de l’Univers pris dans son ensemble. Il recouvre essentiellement le champ de la cosmologie et pose des problèmes très spéciaux quant à sa méthodologie. Le rôle de l’espace-temps courbé de la relativité générale y est fondamental.
Physique quantique et physique classique
Les principaux caractères de la mécanique quantique ont été précisés plus haut, ainsi que ceux de la physique classique, qui décrit les systèmes macroscopiques et traite de quantités continues (et non pas discrètes, ou quantiques, c’est-à-dire ne prenant que des valeurs isolées bien définies). De plus, les lois de la physique classique sont déterminées, en ce sens qu’elles n’exigent pas l’emploi de la notion de probabilité et qu’elles n’imposent pas nécessairement des incertitudes dans les mesures.
En réalité, les lois de la physique classique sont, au sens mathématique, les formes limites que prennent les lois quantiques lorsque, pour le système considéré, la constante d’action de Planck peut être assimilée à zéro.
Avec cette acception des termes, la théorie de la relativité, qu’elle soit restreinte ou générale, est tenue pour classique lorsqu’elle traite d’objets macroscopiques, ce qui est le plus souvent le cas pour la relativité générale.
Physique fondamentale et physique appliquée
On peut, de manière un peu arbitraire, distinguer le domaine de la physique fondamentale et celui de la physique appliquée comme correspondant respectivement à l’analyse de ce qui est encore inconnu et à l’utilisation pratique de ce qui est déjà connu.
Physique expérimentale et physique théorique
La distinction entre physique expérimentale et physique théorique reflète tout d’abord celle des différentes étapes de la découverte, l’expérience intervenant dans l’établissement des données et la vérification, la théorie prenant en charge la création de l’hypothèse et la déduction de ses conséquences. Cette distinction correspond surtout à une spécialisation des physiciens, qui semble exigée à la fois par la complexité des techniques instrumentales actuelles et par l’étendue des connaissances mathématiques qui sont utiles à la théorie. Une telle spécialisation n’est pas tout à fait un phénomène nouveau, mais sa quasi-nécessité est récente.
afro
abualy
abualy
Admin
Admin

Nombre de messages : 193
Age : 34
Localisation : Marrakech
Date d'inscription : 10/12/2006

http://abualy.c.la

Revenir en haut Aller en bas

Exposé sur: les questions posés sur un physicien Empty Re: Exposé sur: les questions posés sur un physicien

Message par Omega Dim 21 Oct 2007, 08:10

Thank you
Omega
Omega
V.I.P.
V.I.P.

Nombre de messages : 63
Age : 32
Localisation : Maroc
Date d'inscription : 05/01/2007

http://puzzle-junior.jeun.fr/

Revenir en haut Aller en bas

Revenir en haut

- Sujets similaires

 
Permission de ce forum:
Vous ne pouvez pas répondre aux sujets dans ce forum
Ne ratez plus aucun deal !
Abonnez-vous pour recevoir par notification une sélection des meilleurs deals chaque jour.
IgnorerAutoriser